Sorption Enhanced Mixed Matrix Membranes for H₂ Purification and CO₂ Capture (DE-FE0026463)

Shailesh Konda¹, **Haiqing Lin**¹, Mark Swihart¹, Maryam Omidarkordshouli¹, Deqiang Yin¹, and Lingxiang Zhu¹ Jay Kniep² and Tim Merkel² Tony Wu³

¹University at Buffalo, State University of New York **(UB)** ²Membrane Technology and Research, Inc., Newark, CA **(MTR)** ³National Carbon Capture Center, Wilsonville, AL **(NCCC)**

NETL CO₂ Capture Technology Project Review Meeting Pittsburgh, PA 8/10/2016

Sorption Enhanced Mixed Matrix Membranes for H₂ Purification and CO₂ Capture

Award number:	DE-FE0026463		
Project period:	10/1/15 to 9/30/18		
Funding:	\$1,470,099 DOE \$ 373,004 UB and MTR contribution \$1,843,103 total		
Program manager:	Steve Mascaro (previously Elaine Everitt)		
Participants:	University at Buffalo (UB) Membrane Technology and Research, Inc. (MTR) and National Carbon Capture Center (NCCC)		
Project Objectives:	Develop industrial membranes with H_2 permeance of 500 gpu and H_2/CO_2 selectivity of 30; and		
	Conduct parametric tests with real syngas at NCCC.		

,

Project Scope and Partners

- **BP1:** Prepare mixed matrix materials with H_2 permeability of 50 Barrers and H_2/CO_2 selectivity of 30 (Q1-Q4)
- **BP2:** Prepare thin film composite membranes with H_2 permeance of 500 gpu and H_2/CO_2 selectivity of 30 **(Q5-Q10)**
- **BP3:** Conduct a 6-week field test of membranes with real syngas at NCCC **(Q11-Q12)**

MTR's Exampled Membrane Process for Precombustion CO₂ Capture

Merkel, Zhou and Baker, J. Membr. Sci., 389, 442 (2012) Merkel, et al., NETL CO₂ Capture Technology Review Meeting, 2011.

4

MTR's Techno-Economic Analysis

Merkel, Zhou and Baker, J. Membr. Sci., 389, 442 (2012). Merkel, et al., NETL CO₂ Capture Technology Meeting, 2011.

5

Membrane: Energy Efficient Separation

$$P_A = S_A \times D_A$$

Materials with high H_2 sorption

Materials with good size-sieving ability

State-of-Art Membrane Materials

Berchtold, et al., NETL CO_2 Capture Technology Meeting, 2015. Jayaweera, et al., NETL CO_2 Capture Technology Meeting, 2015.

L. Shao, et al., J. Membr. Sci., 256 (2005) 46-56.

Merkel, Zhou and Baker, J. Membr. Sci., 389, 442 (2012). Merkel, et al., NETL CO₂ Capture Technology Meeting, 2011.

7

Our Approach: H_2/CO_2 Solubility Selectivity

$$\alpha = \frac{P_{H_2}}{P_{CO_2}} = \frac{S_{H_2}}{S_{CO_2}} \times \frac{D_{H_2}}{D_{CO_2}}$$

Materials	Temp. (°C)	H ₂ solubility cm ³ (STP)/(cm ³ atm)	H ₂ /CO ₂ solubility selectivity
Poly(dimethyl siloxane)	35	0.10	0.078
Polysulfone	35	0.075	0.036
Matrimid [®]	35	0.12	0.035
Pd metal*	25	38,000	> 1,000

* Calculated at 0.02 bar H_2

Adams and Chen, Materials Today, 14 (2011) 282-289

8

Our Approach: Mixed Matrix Materials

Project Plan and Milestones

- (1) High performance mixed matrix materials identified;
- High performance thin film composite membranes prepared; Testing skid modified at NCCC;
- (3) Parametric testing of membranes

Preparation and Characterization of Pd Nanoparticles

Hot-injection method

11

6 – 8 nm

 Pd^{2+} •

Oleylamine (OAm) \lor

Preparation and Characterization of Pd-Cu (60/40) Alloy Nanoparticles

Intensity (cps)

Gas Sorption in Pd Nanoparticles

- Extremely high H_2/CO_2 solubility selectivity (~ 840)
- H₂ chemisorption: independent of gas pressure 13

Preparation of PBI/Pd Mixed Matrix Materials

14 **PBI/Pd (10 – 70 wt%) MMMs**

Pure PBI

SEM - EDS Mapping of PBI/30%Pd

Adding Pd increases H_2/CO_2 solubility selectivity

Materials	T(0C)	H ₂ solubility	H_2/CO_2 solubility
	1(°C)	$cm^{3}(STP)/(cm^{3} atm)$	selectivity
Matrimid®	35	0.12	0.035
PBI	150	< 0.10	< 0.20
PBI/ 10wt% Pd	150	16	33
PBI/ 20wt% Pd	150	32	32

Effect of Pd Loading on H_2/CO_2 Separation Properties

Effect of Temperature on H_2/CO_2 Separation Properties

Gas Separation Properties of Mixed Matrix Materials

Future Work: Thin Film Composite Membranes (BP2)

Selective layer Gutter layer PEI porous support Non-woven fabric 50 - 200 nm 50 - 200 nm 30 - 60 µm 100 - 150 µm 538.F3 (7920)-F)

Automatic dip coater

Thin film composite membranes

H. Lin et al., J. Membr. Sci. 457, 149-161 (2014).

Future Work: Membrane Test at NCCC

Summary

(b) Tailoring Pd-based nanomaterials for H₂ sorption and diffusion

Acknowledgments

Steve Mascaro

Mark Swihart's research group

Tim Merkel Jay Kniep

Tony Wu Frank Morton